

Product specification

Product number:	GL-002	
Product name:	BC2L-A lectin produced recombinantly in <i>E. coli</i> , unconjugated	
Form:	Lyophilized powder	
Unit size:	1 mg, 5 mg, 10 mg	
Sugar specificity:	D-mannose (see the detailed information below)	
Protein sequence:	ADSQTSSNRAGEFSIPPNTDFRAIFFANAAEQQHIKLFIGDSQEPAAYHKLTTRDGPREATLNSG NGKIRFEVSVNGKPSATDARLAPINGKKSDGSPFTVNFGIVVSEDGHDSDYNDGIVVLQWPIG	
Storage conditions:	For long-term storage, keep the freeze-dried lectin at -20 $^\circ\text{C}.$ After dissolving, store the sample in the fridge.	

This product is for R&D use only. Not for human or animal use.

Basic information:

Name:	BC2L-A (BcIA)	Molecular weight (monomer):	13764.1 Da
Organism:	Burkholderia cenocepacia	Extinction coefficient:	8480 M ^{.1} cm ^{.1}
Expression host:	Escherichia coli	Oligomeric state:	dimer
Tags:	no		

Carbohydrate specificity:

BC2L-A lectin (formerly BclA) is specific to a-mannosides. It binds D-mannose, various mannosylated oligosaccharides, and oligomannose-type N-glycans without particular preference for the linkage types (α 1-2, α 1-3, α 1-6) [1]. BC2L-A binds heptoses (in *manno*- configuration) from the Burkholderia cell wall lipopolysaccharide, but with lower affinities than D-mannose and its derivatives [2].

Ion dependency: Ca²⁺ Glycan array data available at functionalglycomics.org

Stability:

Stable in a variety of buffers with pH 4.5-9.5. For example, Tris, Hepes, MES, and phosphate are suitable buffers for BCL-A. Since the presence of calcium ions in the binding site is required for lectin activity, adding calcium ions (0.1-0.5 mM CaCl₂) to the working buffer is recommended. Avoid EDTA and other chelating agents as they lead to removing Ca²⁺ ions from the binding site and losing lectin activity. After reconstitution, the protein should be stable in the fridge for weeks. Adding sodium azide (0.02%) is recommended to avoid microbial growth.

T_m = 87 °C (DSC, 20 mM Tris, 100 mM NaCl, 0.1 mM CaCl₂, pH 7.5) [1]

Applications and biological effects:

BC2L-A can be used, for example, in lectin blotting, fluorescence microscopy, flow cytometry, and lectin histochemistry experiments to study glycosylation of proteins, cells, and tissues. It can be used to isolate specifically mannosylated glycans and glycoproteins (using, e.g., lectin affinity chromatography). BC2L-A lectin is also present in commercial lectin microarrays.

In addition, BC2L-A was recently used to enrich C- and O-mannosylated peptides from the tryptic digests of cell extracts before mass spectrometry analysis [3].

References:

- 1. Lameignere, Malinovská et al, Biochem J, 2008, doi: 10.1042/bj20071276
- 2. Marchetti, Malinovská et al, Glycobiology, 2012, doi: 10.1093/glycob/cws105
- 3. Hütte et al, Anal Chem, 2022, doi: 10.1021/acs.analchem.2c00742

Guidelines for reconstitution of the lyophilized product

Wear protective gloves and clothing when handling the product. Respiratory protection should be worn when working with lyophilized lectin.

- 1. Allow the product to equilibrate to room temperature before opening the vial.
- 2. The product is offered in different amounts. For 1 mg, we recommend briefly centrifuging the vial and dissolving the whole lyophilisate. For 5 mg and 10 mg products, the desired quantity of freeze-dried protein can be transferred to a clean tube and dissolved there.
- 3. Add the desired solvent volume (see below for buffer recommendation), and allow the sample to reconstitute in the fridge (2 hours are recommended). If the undissolved particles are observed, let the sample dissolve at room temperature with gentle agitation, or for a prolonged period (overnight) in the fridge. Do not vortex.
- 4. Centrifuge the sample on a bench-top centrifuge (15 min, max speed) to remove the eventual insoluble material and check the concentration of the reconstituted lectin by measuring the absorbance at 280 nm (e.g., by Nanodrop).

In some instances, it may be challenging to dissolve the lyophilized powders completely, and the reconstitution efficiency may vary for different buffers. Therefore, 4GLYCO provides their customers with the output of testing their lectins in the most common solvents. The data can help customers select the appropriate buffer.

solvent	PA-IL dissolved	
water (MilliQ)	98 %	 The data were obtained by dissolving
20 mM Na acetate, pH 4.5	100 %	0.5 mg of fresh, freeze-dried lectin in
20 mM MES, pH 6.0	94 %	500 μ l of the buffers (2 hours, 4 °C),
20 mM Tris, pH 7.5	96 %	centrifuging, and measuring the lectin
50 mM Na borate, pH 8.5	N/A	concentration in the supernatant
20 mM Na acetate, 150 mM NaCl, pH 4.5	N/A	 spectrophotometrically.
20 mM MES, 150 mM NaCl, pH 6.0	93 %	Please note that the data are presented
20 mM Tris, 150 mM NaCl, pH 7.5	97 %	to compare different solvents. The
20 mM Hepes, 150 mM NaCl, pH 7.5	98 %	absolute numbers may vary due to
PBS	99 %	various factors.